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The thermal boundary layer approximation is used to examine the solidification 
of steel ingots of rectangular cross section during continuous teeming and the 
effect of the sides on solidification time. 

The structure of a solidifying ingot is heavily influenced by its shape and dimensions 
[i]. A substantial amount of relevant empirical data has now been accumulated and has been 
augmented by data obtained through analog and digital modeling. In particular, there has 
been broad speculation as to the effect of the ratio of the sides of a rectangular ingot on 
solidification time (see [2], for example). However, the data from full-scale tests and 
from calculations agree only qualitatively. To obtain quantitative agreement as well, it 
will be necessary to significantly improve the accuracy of the full-scale measurements, re- 
fine the mathematical models of teeming processes, and use better computational algorithms 
to study these processes. 

This study is a continuation of [3], which examined the dependence of the solidifica- 
tion process on different (physical and geometric) parameters in the continuous teeming of 
cylindrical steel ingots. We will employ the well-known thermal boundary layer model [4]. 
In modeling rectangular ingots, this model allows us to change over from a three-dimension- 
al quasisteady Stefan problem to a two-dimensional "nonsteady" problem for a parabolic 
equation. Further simplification of the problem (without loss of accuracy) entails the con- 
struction of a unidimensional model which ignores the dependence of solidification on the 
cross section of the ingot with respect to its variation along the large side. Within the 
framework of this approximation, it is possible to study various interesting mathematical 
models of a continuous-cast ingot. For example, it is possible to allow for the motion of 
the melt. The present investigation examines the question of the ratios of the sides of a 
rectangular ingot for which it is possible to use a unidimensional approximation. To solve 
two-dimensional heat-conduction problems with phase transformations, we developed an algo- 
rithm based on the most rapidly converging iteration methods currently available for solving 
grid problems. 

Mathematical Model. We direct the OZ axis along ingot being withdrawn from the center. 
The ingot has a rectangular cross section G = {(x, y) I [xl <a, IYl < b}. The temperature 
field inside the ingot is described by the heat-conduction equation: 

ay k = ( i )  

(x, y) 6O, O < z < o o .  

We will assume that the thermophysical characteristics of the entire ingot are constant. 
The Stefan conditions below are satisfied at the phase boundary S, where T = T*: 

T 1 = T~ = T*, (x, !], z) 6 S, (2)  

] ] ~ = - -  ~v cos (lz, z), (x, ~, z) E S. ( 3 )  

In  (2)  and ( 3 ) ,  t h e  s u b s c r i p t  1 c o r r e s p o n d s  t o  t h e  r e g i o n  of  t h e  m e l t  Gz, where T > T* 
( l i q u i d  p h a s e ) .  The s u b s c r i p t  2 c o r r e s p o n d s  t o  t he  ha rdened  i n g o t  G2, where T < T* ( s o l i d  
p h a s e ) .  The l e t t e r  n d e n o t e s  an ou tward  ( i n  r e l a t i o n  t o  G1) normal  t o  S, w h i l e  cos  (n ,  z)  
r e p r e s e n t s  t h e  c o s i n e  o f  t he  a n g l e  between t h e  normal  n and t h e  a x i s  OZ. 
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Fig. i. Fusion isotherms for an ingot of square cross sec- 
tion with u0 = 1.02, u a = 0.2, Pe = 150, St = 0.2, Bi 0 = 3.0, 
x = 0.0, at z = iAz, i = i, 2, ..., i0, Az = 9.375. 

Fig. 2. Phase boundary for the variant with u 0 = 1.02, u a = 

0.2, Pe = 150, St = 0.2, Bi0 = 3.0; Bi I = 0.2, • = 0.01, p = 
2, at z = iAz, i = i, 2, ..., 15, Az = 9.375. 

The Stefan approximation (2)-(3) may be incorrect for modeling the solidification of 
steel ingots. Here, it is preferable to use different models of a two-phase region [5]. As 
an example, along with the Stefan approximation, we studied the teeming of steel in ingot 
molds and on a continuous caster through the use of a model of an equilibrium two-phase re- 
gion. In this model, solidification occurs in the solidus-liquidus temperature range. The 
location of this range depends on the grade of steel, and the range is fairly small for low- 
carbon steels. Also, as calculations show, the width of the two-phase zone does not signif- 
icantly affect the result. Thus, we restricted ourselves to (2) and (3) in studying the 

effect of the form of the cross section of a steel ingot on the solidification process. 

Let us discuss the boundary conditions for Eq. (I). At z = 0, the temperature of the 
ingot coincides with the temperature of the molten metal being teemed, i.e., 

T(x, ~, 0)==To, (x, u) EG. (4) 

With sufficiently large z, the ingot cools to the ambient temperature: 

T(x,  y, z)--+T a, z -Too,  (x, y)EG. (S) 

The heat transfer on the lateral faces of the ingot is given by the relation 

0T k = - - ~ ( T - - T h ) ,  (x, @EG, 0 < z < ~ ,  (6) 
On 

where ~ = ~(z)  i s  an a s s igned  f u n c t i o n .  

We will use the thermal boundary layer approximation [5] to solve boundary-value problem 
(1)-(6). This approximation is valid for sufficiently high withdrawal velocities v. 

After changing Eqs. (1)-(6) to dimensionless form, we obtain: 

02u -[- O~u Pe Ou (x, u) C G, z > O, ( 7 )  
Ox 2 dg z Oz ' 

(u)~=(uh== 1, (x, u, z)ES, (8) 

( Ou ~ _ (  Ou ) . . . .  PeStcos(n, z), (x, y, z)ES,  (9) 
W ) ,  \ o,, 

u(x. g. O) -.u,. (x. g) EO. (i0) 
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Fig. 3. Section of the crystallization front at y = 0 (u 0 = 
1.02, u a = 0.2, Pe = 150; St = 0.2, Bi 0 = 3.0, • = 0.0): i) 
cylindrically symmetrical ingot; 2) ~ = i; 3) 1.2; 4) 1.6; 
5) unidimensional (~ = ~). 

Fig. 4. Effect of the boundary regime on the form of the 
crystallization front (u 0 = 1.02, u~ = 0.2, Pe = 150, St = 
0.2, Bi 0 = 3.0, Bi I = 0.2, • = 0.01): i) cylindrical case; 
2) ~ = i; 3) 1.2; 4) 2.0; 5) unidimensional (~ = ~). 

Ou 
- - - -  Bi(U--Ua),  (x, g)COG, z > 0 ,  (11) 
On 

where G = {(x, y) I lxl < i, IYl < U}. 

As in [4], we used the following relation for the lateral cooling regimes: 

Bi (z) : (Bio - -  Bil) exp (-- • + Bij, (12) 

where Bi(0) = Bi0, Bi(~) = Bil. 

Finite-Difference Algorithm. Two main approaches are used to numerically solve problems 
of the Stefan type. The first involves determination of the unknown phase boundary (see [6], 
for example). The second approach, based on the use of a generalized formulation of the 
problem, makes it possible [7] to readily construct through-type difference schemes for solv- 
ing multidimensionalgrid problems. We used the second approach here and we smoothed the 
coefficients. Let us briefly discuss certain features of the algorithm being employed. 

Equation (7) can be written with the Stefan conditions (8), (9) as a single equation 

Ou 
Ox zO2u 6 O~Uog z - - P e ( 1 - ~ S t 6 ( u - - 1 ) ) - ~ z ,  (x, g) CG, z~>O. (13) 

In an approximate solution of problem (13), (i0), (Ii), the 6-function in the right side of 
(13) is replaced by a smoothed function 6 A. For example: 

0, [u--  1]>A.  

The t e m p e r a t u r e  o f  t h e  m e l t  be ing  teemed u0 i s  c l o s e  to  t h e  phase  t r a n s f o r m a t i o n  t e m p e r a t u r e  
u*,  i . e . ,  problem ( 7 ) - ( 1 1 )  i s  c l o s e  t o  be ing  a one -phase  problem.  As shown by n u m e r i c a l  ex-  
periments, the use of a standard smoothing scheme of the type (14) results in fairly large 
errors. For such problems, it is convenient to use the procedure of "local" smoothing of 
the 6-function. In the unidimensional case, this corresponds to the use of (14) with A = 
A(x), i.e., the !'spreading" interval depends on the point x [8]. We used a similar "local" 
smoothing procedure in the solution of problem (7)-(10). 

We employed an implicit difference scheme to approximate the differential problem. The 
difference problem was solved by an iterative process which successively refined the unknown 
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boundary. The elliptical grid problem was solved on the basis of the ELLDEC application 
package [9]. We used the MAFCG2 subroutine, which realizes an iterative method involving 
approximate factorization [i0]. We should point out that, for this method, the rate of 
convergence is independent of the coefficient with 8u/Sz. The authors of [ii], using a 
somewhat larger memory, obtained similar results by an alternate-triangular iteration method. 
These methods of inverting the elliptical grid operator on the upper level make it possible 
to construct purely implicit schemes having characteristics similar to more economical 
schemes. 

Sample Calculations. We will present some results of calculations performed to solve 
problem (7)-(11). The results serve to augment the data in [3]. For the variant with u0 = 
1.02, u a= 0.2, Pe = 150, St = 0.2, Bi 0 = 3.0, • = 0.0, Fig. 1 shows the phase-boundary 
lines u = 1 with different z in the case of an ingot having a rectangular cross section. 
The calculations were performed for one-fourth of G on a uniform 41 • 41 rectangular grid. 
The results of similar calculations with D = 2 are shown in Fig. 2. It is evident that the 
solidification time(depth) for such an ingot cross section is actually determined by the 
time of solidification of the central section. Figure 3 shows more accurate quantitative 
dependences of solidification time on the elongation of the rectangular ingot B- The same 
figure also shows data for a cylindrically symmetrical ingot (y = 0). The effect of the 
boundary regime (• = 0.01, Bi 0 = 3, Bi I = 0.2) is shown in Fig. 4. 

The results of the calculations show that at ~ ~ 2, the effect of ingot elongation on 
solidification time (depth) cannot be ignored within the range of parameters investigated 
here. 

NOTATION 

(x, y, z), cartesian coordinates; v, ingot withdrawal velocity; T*, phase transforma- 
tion temperature; Ta, ambient temperature; To, initial temperature of the melt; X, heat of 
phase transformation; k, thermal conductivity; c, specific heat; ~, coefficient of heat 
transfer with the environment; Pe = vac/k, Peclet number; St = X/cT*, Stefan number; Bi = 
~a/k, Biot number. 
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